

Can we do it online? Validating a clinical prediction rule for chlamydia and gonorrhea infection among internet-based testers in British Columbia

BACKGROUND:

- Previously, a clinical prediction rule (CPR) was developed using sexuallytransmitted infection (STI) clinic data from Vancouver, Canada, to predict chlamydia and/or gonorrhea (CT/GC) infection among asymptomatic women and heterosexual men¹
- GetCheckedOnline (GCO)², a program of the BC Centre for Disease Control (BCCDC), currently offers universal CT/GC urine screening to all clients

OBJECTIVE:

- The objective of this study was to evaluate CT/GC case detection online by screening GCO clients under two scenarios:
 - 1. Using population-based guidelines
 - 2. Using individualized guidelines, i.e., a CPR

METHODS:

- Data sources:
 - GCO program database and BCCDC's STI Information System
- Study population:
 - Women and heterosexual men who completed testing for CT/GC between October 2015 and June 2018
 - Restricted to those who were **asymptomatic** and **not contacts of possible** STI cases at time of testing with complete data for all CPR variables
- Population-based guidelines:
 - Public Health Agency of Canada (PHAC) STI guidelines³
 - A binary variable was created for the presence of the primary risk factor for CT/GC infection: men aged 20–29 and women aged 15–24
- Individualized guidelines:
 - The previously-developed CPR¹ estimates risk of CT/GC infection based on 5 predictor variables (Table 1) : (1) age, (2) ethnicity, (3) number of sexual partners in the past 6 months, (4) previous chlamydia diagnosis, and (5) previous gonorrhea diagnosis
- Associations with infection:
 - Associations between predictor variables and CT/GC infection were assessed by calculating unadjusted odds ratios (OR)
- Model accuracy:
 - Calibration of the CPR was assessed by calculating: Hosmer-Lemeshow (H-L) goodness-of-fit statistic
 - **Discrimination** of the CPR was assessed by calculating:
 - Area under the receiver operating characteristic curve (AUC)
- Performance measures:
 - Sensitivity and proportion of GCO clients screened were calculated at different CPR cut-off scores and by application of PHAC guidelines

ACKNLOWLEDGEMENTS The authors would like to thank Janyn Mercado for assistance with data linkage and preparation, Caren Rose for guidance on imputation methods, and Hsiu-Ju Chang for assistance in research administration. This study was funded by the Canadian Institutes of Health Research. Research for this project received approval from the University of British Columbia's Research Ethics Board (# H18-00437

REFERENCES: I. Falasinnu T, Gilbert M, Gustafson P, Shoveller, J. Deriving and validating a risk estimation tool for screening asymptomatic chlamydia and gonorrhoea. Sex Transm Dis. 2014 Dec;41(12):706-12 Gilbert M, Salway T, Haag D, Fairley CK, Wong J, Grennan T, et al. Use of GetCheckedOnline, a Comprehensive Web-based Testing Service for Sexually Transmitted and Blood-Borne Infections. J Med Internet Res. 2017 Mar 20;19(3):e81

RESULTS:

- Of completed CT/GC testing episodes among women and heterosexual men on GCO, n=2703 met study inclusion criteria
- Prevalence of CT/GC infection in GCO was 2.2% (**Table 2**)
- Within GCO, CPR variables associated with CT/GC infection were age 14-19 years old (OR=4.99, 95%CI: 1.07-17.92), age 20-24 years old (OR=3.09, 95%CI: 1.37-7.58), and previous CT diagnosis (OR=3.26, 95%CI: 1.53-6.29)
 - Identifying as a woman was associated with CT/GC infection (OR=1.95, 95%CI: 1.15-3.38)

Age

Ethr

of mon

Prev

Prev

- The H-L statistic p-value was 0.95 $(\chi^2=2.69, d.f.=8)$, indicating good model fit within GCO
- The CPR showed reasonable discrimination within GCO (AUC=0.64, 95%CI: 0.57-0.71; Figure 1)
- Performance measures (Figure 2):
- If GCO clients were screened according PHAC guidelines, you would avoid screening 70% of the population and would miss 57% of CT/GC cases
- If only GCO clients with risk scores \geq 4 were screened, you would avoid screening 15% of the population and would miss only 5% of CT/GC cases

. Public Health Agency of Canada. Canadian Guidelines on Sexually Transmitted Infections — Updated December 2016. Public-health/services/infectious-diseases/sexual-health-sexually-transmitted-infections/canadian-guidelines.html. Accessed July 31, 2018).

Aidan Ablona¹, Titilola Falsinnu², Michael Irvine^{3,4}, Travis Salway^{1,4}, Devon Haag⁴, Mark Gilbert^{1,4}

- BC Centre for Disease Control, Vancouver, Canada

Table 1: CPR for predicting **CT/GC** infection

Variable	Score
(years)	
14-19	8
20-24	3
25-29	1
30-39	-2
≥40	0
nicity	
White	0
Non-white	5
f sexual partners, previous 6 hths	
0	0
1-2	5
≥3	6
vious chlamydia diagnosis	
Yes	7
No	0
vious gonorrhea diagnosis	
Yes	1
No	0

Table 2: Population characteristics of CT/GC testing episodes

		Clinic Derivation Population, 2000-2006, n=10437		GCO Validation Population, 2015-2018, n=2703	
Variable		n	%	n	%
Chlamydia/gonorrhea case		184	1.8%	58	2.1%
Gender	Women	3496	33.5%	1243	46.0%
	Men	6941	66.5%	1460	54.0%
Age (years)	14-19	257	2.5%	50	1.8%
	20-24	1962	18.8%	474	17.5%
	25-29	2651	25.4%	638	23.6%
	30-39	3181	30.5%	907	33.6%
	≥40	2386	22.9%	634	23.5%
Ethnicity	White	7732	74.1%	2081	77.0%
	Non-white	2705	25.9%	622	23.0%
# of sexual partners*	0	644	6.2%	109	4.0%
	1-2	6857	65.7%	1456	53.9%
	≥3	2936	28.1%	1138	42.1%
Previous chlamydia diagnosis [^]		1518	14.5%	169	6.3%
Previous gonorrhea diagnosis [△]		619	5.9%	15	0.6%

*STI clinics: previous 6 months; GCO: previous 3 months ^ASTI clinics: assessed for any diagnosis ever by medical chart review; GCO: assessed by self-report within past 12 months

Figure 2: CT/GC tests averted and diagnoses missed

CONCLUSIONS:

FOR MORE INFORMATION: E-mail: aidan.ablona@alumni.ubc.ca Website: https://getcheckedonline.com/

School of Population and Public Health, University of British Columbia, Vancouver, Canada Department of Health Research and Policy, Stanford School of Medicine, Stanford, USA Institute of Applied Mathematics, University of British Columbia, Vancouver, Canada

• CPRs can be applied to an online context with reasonable calibration and discrimination, although population demographics may explain differences in model accuracy between STI clinic and online testing environments • Compared to population-based guidelines, CPRs perform better at detecting CT/GC infections while reducing the number of tests offered

• By optimizing case detection among asymptomatic internet-based STI testers, overall testing burden and related costs can be reduced

