

No differences in knowledge of key HIV test concepts between users of an online STI testing service and in-clinic testers in Vancouver, Canada

Travis Salway^{1,2}, Kim Thomson^{1,2}, Darlene Taylor³, Elizabeth Elliot⁴, Tom Wong⁵, Christopher Fairley⁶, Devon Haag¹, Jean Shoveller^{2,7}, Gina Ogilvie^{1,2}, Mark Gilbert^{1,2}

- BC Centre for Disease Control
- University of British Columbia
 - University of British Columbia
- Health Canada
- University of Melbourne BC Centre for Excellence in HIV/AIDS
- College of Registered Nurses of BC

BACKGROUND:

- Online HIV/STI testing offers a low-barrier alternative to in-clinic testing but may lead to missed opportunities for education due to lack of provider-delivered pre-test counseling.
- GetCheckedOnline (GCO, getcheckedonline.com) is an online testing service offered through an urban STI clinic, launched in 2014.
- GCO web content was developed in consultation with clinicians and experts responsible for provincial and national HIV testing guidelines, to ensure key pre-test counseling information is clearly conveyed.¹

OBJECTIVE:

 To compare knowledge of key HIV test concepts between clients testing through GCO and those testing in-clinic

SURVEY METHODS:

- Eligibility: HIV-negative; received HIV test in previous 2 weeks, either via GCO or in-clinic
- Recruitment (2015-2016):
 - Email invitation at 2 weeks post-results, to those consenting to be contacted for research (24% of GCO testers, 20% of clinic testers)

Survey:

- Online and anonymous
- Knowledge of HIV test concepts measured using 6-item true/false assessment developed through modified Delphi process, cognitive testing, and psychometric evaluation (Table 1)

Analysis:

- Linear regression used to assess relationship between site (GCO vs. clinic) and overall test score
- Adjustment for covariates based on hypothesized common causes (Figure)
- * p<0.05 (two-sided) statistically significant

Figure: Causal assumptions for model

1. Gilbert et al. International Journal of Medical Informatics 2017.

RESULTS:

Table 1: HIV test knowledge, correct responses

Statement (correct response)	GCO n=73	Clinic n=297
If a person has a negative HIV test, then they do not have HIV. (F)	63%	68%
Six weeks after getting HIV most people will have a positive HIV test. (T)	63%	60%
There is an HIV test that takes a few minutes to give you a result. (T)	75%	60%*
When blood is drawn for HIV testing, it is always tested for other infections. (F)	89%	76%*
Any health care professional like a doctor, nurse, or pharmacist can view your HIV test result (positive or negative). (F)	79%	70%
All positive test results are reported to the public health department. (T)	84%	78%

Table 2: Mean HIV test knowledge score (scale: 0-6)

	GCO n=73	Clinic n=297
Overall, unadjusted	4.5	4.1*
Overall, adjusted (see Table 3)	4.4	4.2
Among first-time testers (n=50), unadjusted	3.7	3.6

Table 3: Correlates of HIV test knowledge

Variable	Adjusted β
Test site: GCO (ref: clinic)	0.21
Age (continuous), per year	0.01
Men who have sex with men	0.66*
University degree	0.25*
Immigrated to Canada last 10 years	-0.48*
English language spoken at home	0.54*
First-time testing for HIV/STI	-0.46*

* p<0.05

CONCLUSIONS:

- Post-HIV test knowledge of concepts addressed in pre-test counseling was high in both GCO and clinic testers, and not significantly different after adjustment for covariates.
- Equivalent education about core HIV test concepts can be achieved through online HIV/STI testing with intentional design & development.
- Non-English speakers and first-time testers demonstrated lower knowledge of HIV test concepts, suggesting the need to specifically adapt/translate information for these clients.

